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Review

Consistency checks on elastic properties

of crystals

D. B. SIRDESHMUKH∗,‡, K. G. SUBHADRA
Physics Department, Kakatiya University, Warangal -506009, India

Several methods are available for the determination of the bulk modulus of solids and
single crystal elastic constants. Although high accuracy is claimed, cases exist where the
values of the elastic properties reported by different workers using different or same
methods show differences far beyond the claimed limits of experimental errors. More than
two dozen cases are cited where the differences in the reported values of the bulk moduli
are of the order of 20% or more; in some cases the differences are as much as a factor of
3–5. Similarly, nearly a dozen cases are cited where the single crystal elastic constants of a
crystal from different sources differ by about 20% or more and in some cases by a factor of
3–15; in fact there are cases where the reported elastic constants even differ in sign. This
paper discusses a number of consistency checks for elastic properties of solids which help
in sifting acceptable values from out of a wide range of reported values.
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Nomenclature

A Mean atomic weight
αM Madelung constant
a Lattice constant
α Linear coefficient of thermal expansion
B Bulk modulus
Cij Elastic constants
CV Specific heat at constant volume
e Electronic charge
ε0 Static dielectric constant
fi Phillips ionicity
γ Gruneisen constant
H Hardness
k Interatomic force constant
N0 Avogadro number
G Shear modulus
m Mass
µ Reduced mass
n Refractive index
θ Debye temperature
r Interatomic distance
P Pressure
ρ density
Sij Elastic compliances
σP Poisson’s ratio
σ Surface energy
u Volume per ion pair
up Particle velocity
ufs Free surface velocity
v, vij Velocities of sound waves
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U Cohesive energy
US Shock wave velocity
V Molar volume
Vc Unit cell volume
Va Atomicvolume
ωw Transverse angular frequency
ψ Compressibility
Y Young’s modulus
z Valence
Z Atomic number

1. Introduction
The elastic properties of solids have a two-fold impor-
tance. Firstly, they are indicators of mechanical strength
which is a matter of great practical significance. Sec-
ondly, on the scientific side, the elastic properties are in-
puts for determination of interatomic potential parame-
ters and lattice dynamical calculations. When measured
at high pressures, they provide information regarding
the anharmonicity of the lattice. In view of this impor-
tance, a vast amount of information is now available
on the elastic properties of solids. This information is
scattered in various scientific journals. Exclusive com-
pilations of data on elastic properties of solids have also
been published [1–7].

Several experimental techniques are available for the
determination of elastic properties. Some commonly
employed techniques will be discussed in Section 2
along with a mention of their limitations and uncer-
tainties in the results obtained from them. Some of the
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techniques yield isothermal data whereas others yield
adiabatic values. The isothermal and adiabatic values
are mutually convertible by a thermodynamic correc-
tion. The difference between the two is in the range
0.5–2%. The uncertainties claimed in the reported elas-
tic properties are generally about 5% but sometimes as
much as 10%.

In Table I, we include values of bulk moduli at zero
(or atmospheric) pressure. It can be seen that in several
cases the differences in bulk moduli are of the order
of 20% or more and in some cases they are as much
as a factor of 3–5. In Tables II–IV, we quote data on
single crystal elastic constants of some cubic, tetrag-
onal, trigonal and hexagonal crystals. Here again the
single crystal elastic constants differ by about 20% and
in some cases by a factor of 3–15. In fact, there are cases
where the elastic constants from different sources even
differ in sign.

It may be mentioned that the list of crystals show-
ing differences in reported elastic properties given in
Tables I–IV is not an exhaustive list. Further such con-
flicting data have been included in some compilations
without any comments. Thus Simmons and Wang [7]
call their compilation ‘uncritical’ and mention the in-
clusion of ‘suspect elastic data’ leaving it to the reader
to ‘choose the set which he believes better’.

These differences far exceed the admitted limits of
uncertainty. When data differing so severely exist in
literature, it becomes necessary to analyze them with a
view to sifting the correct (or acceptable) data from the
incorrect (or unacceptable). The purpose of this article
is to review consistency checks for elastic properties of
solids.

2. Experimental methods
For the sake of completeness, some of the commonly
used experimental methods are briefly discussed in this
section. For more details, reference may be made to the
cited literature.

2.1. Piston displacement method
As the name suggests, in this method the sample is
directly compressed by a piston or is enclosed in a
medium which is compressed by a piston. The method
was originally introduced by Bridgman [8, 9] and later
developed by Weir [10], Stephens [11] and Vaidya and
Kennedy [12] among others.

As a typical example, the arrangement used by
Vaidya and Kennedy [12] is shown in Figs 1 and 2.
Only the important parts are described here. X is the
sample held between the piston P and a fixed tung-
sten carbide element O . The piston is driven by the
hydraulic ram M . The pressure vessel C is made of
tungsten carbide. The sample is covered by an indium
sheath and the space between the sample and pressure
vessel is filled with pyrophillite. The compression seen
as a relative displacement between the lever arms W
and H , is measured by the dial gauges G.

The observed total compression has significant con-
tributions from the compression of the press and the
compression of the indium sheath. The ratio of these

Figure 1 Schematic diagram of the piston displacement set-up.

Figure 2 Details of the sample assembly in the piston displacement
set-up.

contributions and the sample compression have to be
optimized. In Bridgman’s experiments, the corrections
were 75% of the total compression whereas they were
reduced by half in the set-up of Vaidya and Kennedy
[12]. Care has to be taken to minimize the effects of
(i) distortion of the press (ii) horizontal fracture of the
pressure vessel and (iii) friction between the piston and
the pressure vessel walls.

This is a static method which gives isothermal values
of the bulk moduli.

2.2. Shock wave method
In this method an explosive is detonated in an enclosed
space. This results in the production of a shock wave.
Either this shock wave is made to directly impinge on
a sample or a projectile propelled by the shock wave
is directed on to the sample. The shock wave veloc-
ity (US) and the particle velocity (up) are measured by
recording the time of arrival of the waves at different
designated points where electrical pin contactors are
located. Whereas the shock wave velocity can be deter-
mined in a straight-forward way, the particle velocity
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TABL E I Bulk moduli (B) of some solids

Solid Method B (kbars) Ref.

1. C (Diamond) (i) Ultrasonics 5800 Bhagavantam and Bhimasenachar [13]
(ii) Doppler scattering 4170 Krishnan et al. [14]

(iii) Ultrasonics 4430 McSkimin et al. [15]
2. Si (i) Piston displacement 3120 Int. Crit. Tables [16]

(ii) Ultrasonics 971 Bolef [17]
(iii) Piston displacement 814 Bridgman: data reanalysed by Kennedy [18]
(iv) Piston displacement 1007 Vaidya and Kennedy [19]

3. Iodine (i) Piston displacement 87.03 Vaidya and Kennedy [19]
(ii) Shockwave 98.04 Keeler [20]

(iii) Piston displacement 76.92 Quoted by Gruneisen [21]
(iv) X-ray diffraction 208.33 Lynch and Drickamer [22]

4. Se (hex.) (i) Piston displacement 92.7 Bridgman: quoted by Gschneidner [23]
(ii) Piston displacement 79 Vaidya and Kennedy [19]

(iii) Ultrasonics 174 Calculated by Sirdeshmukh and Subhadra [24] from Mort [25]
5. Sb (i) Piston displacement 369 Bridgman: data reanalysed by Kennedy [18]

(ii) Piston displacement 404 Vaidya and Kennedy [19]
(iii) Shockwave 255 Keeler [20]
(iv) Ultrasonics 380 Epstein and Brettervelle [26]

6. Zr (i) Piston displacement 755 Bridgman: data reanalysed by Kennedy [18]
(ii) Piston displacement 1028 Vaidya and Kennedy [19]

(iii) Shockwave 976 Keeler [20]
(iv) Ultrasonics 945 Myers [27]

7. Y (i) Piston displacement 337 Bridgman: data reanalysed by Kennedy [18]
(ii) Piston displacement 449 Vaidya and Kennedy [19]

(iii) Shockwave 455 Keeler [20]
(iv) Ultrasonics 491 Smith [28]

8. LiH (i) Piston displacement 270 Well and Lawson [29]
(ii) Piston displacement 228 Voronov et al. [30]

(iii) Piston displacement 357 Stephens and Lilley [31]
9. LiI (i) Piston displacement 168.3 Vaidya and Kennedy [32], Murnaghan Equation

(ii) Piston displacement 135.4 Vaidya and Kennedy [32]; Modified Murnaghan Equation
(iii) Shockwave 333 Keeler [20]
(iv) Ultrasonics 171 Quoted in Sirdeshmukh et al. [33]

10. NaI (i) Piston displacement 156 Bridgman: data reanalysed by Kennedy [18]
(ii) Piston displacement 151 Vaidya and Kennedy [32]

(iii) Shockwave 200 Keeler [20]
(iv) Ultrasonics 151 Quoted in Sirdeshmukh et al. [33]

11. CsBr (i) Piston displacement 144 Vaidya and Kennedy [32]
(ii) Shockwave 221.8 Keeler [20]

(iii) Ultrasonics 145.0 Barsch and Chang [34]
12. AgI (i) Piston displacement 20.1 Bridgman: data reanalysed by Kennedy [18]

(ii) Piston displacement 28.5 Vaidya and Kennedy [32]
13. CaO (i) Piston displacement 218 Bridgman [35]

(ii) Piston displacement 1120 Weir [10]
(iii) X-ray 1120 Perez-Albuerne and Drickamer [36]
(iv) Ultrasonics 1090 Hite and Kearney [37]

14. CaS (i) Piston displacement 357 Bridgman: quoted by Mathur et al. [38]
(ii) X-ray 455 Perez-Albuerne and Drickamer [36]

(iii) X-ray 699 Reanalysis of low pressure data in [36] by present authors
15. SrO (i) Piston displacement 1183 Weir [10]

(ii) Ultrasonics 880 Son and Bartels [39]
16. CeS (i) Piston displacement 1300 Croft and Jayaraman [40]

(ii) X-ray 820 Vedel et al. [41]
17. SmS (i) Piston displacement 151 Chatterjee et al. [42]

(ii) X-ray 476 Kaldis and Wachter [43]
(iii) Ultrasonics 503 Hailing et al. [44]

18. ZnO (i) Piston displacement 450 Cline and Stephens [45]
(ii) Ultrasonics 1399 Soga and Anderson [46]

(iii) Ultrasonics 1436 Bateman [47]
(iv) Optical interferometry 1447 Montalvo and Langer [48]

19. BeO (i) Piston displacement 3704 Weir [10]
(ii) Piston displacement 2433 Cline and Stephens [45]

(iii) Ultrasonics 2198 Bentle [49]
(iv) Ultrasonics 2140 Fryxell and Chandler [50]

20. CdS (i) Piston displacement 380 Cline and Stephens [45]
(ii) Ultrasonics 615 Berlincourt et al. [51]

21. CdSe (i) Piston displacement 281 Cline and Stephens [45]
(ii) Ultrasonics 532 Berlincourt et al. [51]

(Continued.)
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TABL E I Continued.

Solid Method B (kbars) Ref.

21. CdSe (i) Piston displacement 281 Cline and Stephens [45]
(ii) Ultrasonics 532 Berlincourt et al. [51]

22. MnF2 (i) Piston displacement 184 Stevenson [52]
(ii) Ultrasonics 883 Haussuhl [53]

23. GeO2(Rutile) (i) Ultrasonics 1950 Soga [54]
(ii) Ultrasonics 2576 Wang and Simmons [55]

24. Stishovite (SiO2, rutile) (i) Piston displacement 3600 Arhens et al. [56]
(ii) Piston displacement 3000 Arhens et al. [57]

25. Magnetite (i) Piston displacement 1830 Bridgman [58]
(ii) Ultrasonics 1590 Doraiswamy [59]

(iii) Ultrasonics 1390 Simmons and England [60]
(iv) X-ray 1830 Mao et al. [61]

26. Benzil (i) Piston displacement 30.7 Bridgman [62]
(ii) Piston displacement 66.5 Vaidya and Kennedy [63]

TABL E I I Elastic constants (Cij in kbar), bulk modulus B (kbar) and Poisson’s ratio (σ ) of some cubic crystals

S. no. Crystal C11 C12 C44 B σ Source

1. FeS2 (Pyrite) (i) 3585 −529 1035 842 −0.17 Hearmon [2]
(ii) 3818 310 1094 1479 0.07 Simmons and Birch [64]

2. Sodium chlorate (i) 618.2 −208.3 119.6 67 −0.50 Hearmon [1]
(ii) 509 155 118 273 0.23 Alexandrov and Ryzhova [6]

3. PbTe (i) 1040 −44 130 317 −0.04 Chudinov [65]
(ii) 1080 80 130 413 0.07 Houston et al. [66]

4. PbSe (i) 4040 3190 162 3473 0.44 Chudinov [67]
(ii) 1130 150 130 477 0.11 Rabi [68]

(iii) 1240 190 160 540 0.13 Lippmann et al. [69]

TABL E I I I Elastic constants (Cij in kbar) and bulk modulus B (kbar) for some tetragonal crystals

S. no Crystal C11 C12 C13 C33 C44 C66 C16 B Source

1. Zircon (ZrSiO4) (i) 570 250 50 460 140 320 190 Bhimasenachar and Venkataratnam [70]
(ii) 3300 1075 1540 3805 733 397 2040 Rhyzova et al. [71]

(iii) 4230 703 1490 4900 1136 485 2030 Ozkan et al. [72]
2. ADP (i) 676 59 199 336 87 66 2820 Adhav [73]

(ii) 758 −243 133 296 87 61 2060 Huntington [5]
3. KDP (i) 714 −49 129 562 127 63 2680 Huntington [5]

(ii) 785 320 387 763 123 61 5020 Huntington [5]
4. SrMoO4 (i) 1275 886 501 1034 347 213 40 Chung and Li [74]

213 −2400 1275 −40
665 −490 823 +527
823 −989 665 −527

(ii) 1154 599 444 1042 350 475 121 James [75]
(iii) 1190 620 480 1040 349 420 −120 Farley et al. [76]

TABL E IV Elastic constants (Cij in kbar), elastic compliances (Sij in kbar−1), bulk modulus B (kbar) and Debye temperature (θK) for some
hexagonal and trigonal crystals

S. no. Crystal S11 −S12 −S13 2S14 S33 4S44 B θ Source

1. Calcite (trigonal) (i) 0.00103 0.00035 0.00080 0.0012 0.00175 0.0038 −6300 Ramamurthy and Reddy [77]
(ii) 0.00100 0.00038 0.00048 0.0009 0.00175 0.0041 700 Dandekar and Ruoff [78]

C11 C12 C13 C33 C44 C66 B θ Source

2. BeO (hex.) (i) 4700 1680 1190 4940 1530 1520 2495 1260 Bentle [49]
(ii) 4606 1265 885 4916 1477 1670 2244 1280 Cline et al. [79]

3. LaCl3 (hex.) (i) 3065 1238 1653 3611 1677 913 2050 600 Stedman and Newman [80]
(ii) 2585 1670 1517 3419 1731 458 1979 500 Stedman and Newman [80]

(iii) 2952 1564 1607 3648 1742 694 2100 507 Stedman and Newman [80]
(iv) 190 80 100 230 100 60 128 ∼150 Carlson et al. [81]
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Figure 3 Schematic diagram of a shock-wave set-up.

has to be obtained from the free surface velocity (ufs).
A typical arrangement (Syono et al. [82]) is shown in
Fig. 3, which is self-explanatory. The working equa-
tions are:

ρ0US = ρ1 (US − up) (1)

P1 − P0 = ρ0 US up (2)

where ρ is the density, P the pressure, US the shock ve-
locity and up the particle velocity; up = ufs/2 approxi-
mately. The subscripts 0 and 1 refer to the compression
state ahead of the shock and the state immediately be-
hind the shock front respectively. The procedure for
transforming the experimental velocities to pressure-
compression data is discussed in detail by Rice et al.
[83]. The P-V plot thus obtained is called the “Hugo-
niot”; from the Hugoniot, the bulk modulus can be cal-
culated. Further details are given by Goranson et al.
[84]; Mallory [85], Rice et al. [83] and Syono et al. [82].

This method is capable of, by far, the greatest pres-
sure range, up to 2 Mbar (Drickamer et al. [86]). It
is a dynamic method. It is found that, in general, the
compatibility of static (piston displacement) and shock
wave results is good (Rice et al. [83]; Vaidya and
Kennedy [12]). The method yields essentially isother-
mal values.

2.3. X-ray diffraction method
When the X-ray diffraction pattern is recorded at differ-
ent pressures, the Bragg angles change. From this, the
changes in lattice parameters can be calculated. This in-
formation, in turn, leads to the evaluation of the linear
compressibilities and finally to the bulk modulus. The
method yields isothermal values of elastic properties.

The pressure is applied through a pressure medium
or, more commonly, by means of a diamond or tungsten

carbide anvil. The sample may be a single crystal or in
powder form. Both film-and-camera arrangements as
well as diffractometer can be used replacing the com-
mon specimen holder by a pressure cell. While X-ray
radiation is commonly employed, Bartholin et al. [87]
used neutrons and Will et al. [88] used synchrotron
radiation.

Considerable work on determination of compres-
sional data by the X-ray diffraction method has been
done by Perez-Albuerne et al. [89], Jamieson [90],
McWhan and Jayaraman [91], Barnett and Hall [92]
and Takahashi and Bassette [93].

One advantage in this method is that a small sample
is required. Another unique advantage is that in a single
experiment, linear compression can be studied in dif-
ferent directions. A common problem in high pressure
work is that the pressure experienced by the sample is
not necessarily the same as the applied pressure. In the
X-ray diffraction method, this problem is overcome by
using a ‘marker’ or an internal standard. On the other
hand, the application of the method is limited by the use
of Mo radiation which causes fluorescence in some ma-
terials. Also, the short wavelength of the Mo radiation
limits the accuracy with which the lattice parameters
can be evaluated. Leger et al. [94] refer to the effect
of uniaxial stresses on the results. Vaidya and Kennedy
[12] consider the X-ray method to be of “extremely
poor precision”.

2.4. Optical interferometric method
Optical interferometry has also been employed to de-
termine the linear compressibilities and, from them, the
bulk modulus. The optical interferometer, the sample
holder and the schematic diagram of the set-up used by
Montalvo and Langer [48] are shown in Figs 4 and 5.

Figure 4 Optical interferometer (a) view from above, (b) view from side.
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Figure 5 Schematic diagram of the optical method.

The interferometer consists of a glass plate resting over
the surface of an iron cylinder. The sample with a flat
face was held in the annular space of the iron cylin-
der. The incident light beam from a He-Ne laser was
reflected from the lower surface of the glass plate and
the top surface of the sample. The whole interferometer
was placed in a pressure vessel containing isopentane as
the pressure fluid. The interference fringes were sensed
by a photocell coupled to a recorder. The experimen-
tal procedure was to count the fringes as the pressure
changed from 1 to 10 kbar.

The optical interferometric measurements yield
isothermal values of compressibilities and bulk mod-
ulus. Montalvo and Langer [48] used this method to
determine the linear compressibilities of several II–VI
compound crystals and claimed an accuracy of 1%.
However several of their values differ from accurate
ultrasonic values by amounts larger than this value
and also the isothermal-adiabatic conversion correc-
tion. Factors like the errors in the value of the com-
pressibility of iron used in the calculations, the change
in refractive index of the pressure fluid with pressure
change and relative motion between glass and sample
surfaces contribute to the final uncertainty in the results.

2.5. Ultrasonic method
The measurement of velocity of ultrasonic waves is a
popular method for determination of elastic constants
of crystals. The sound velocity in a crystal is a function
of the elastic constants. For example, for cubic crystals,
we have

ρv2 = (C11 − C12)/2 (3)

where ρ is the density, C11 and C12 are two of the
three elastic constants and v is the velocity of a sound
wave propagating in the [110] direction with particle
displacement in the [11̄0] direction. There are simi-
lar equations for other combinations of elastic con-
stants and also for the elastic constants of crystals
of other symmetries. Relations between velocities and
elastic constants for hexagonal and tetragonal crystals
are given by Cline et al. [79] and Farley and Saunders
[95] respectively.

The composite oscillator method for determination
of elastic constants was developed by Balamuth [96],
Rose [97] and Bhagavantam and Bhimasenachar [98].

Huntington [99], Williams and Lamb [100] and Mc-
Skimin [101] employed different versions of the pulse
method.

In the pulse comparison technique of Williams and
Lamb [100] which was further modified by Raju and
Reddy [102], two phase-coherent RF pulses are applied
in quick succession to the transducer attached to the
crystal surface. On transmitting through the sample,
each pulse will generate its own train of echoes. When
the separation of the second pulse is adjusted such that
the echoes from the two coincide, destructive interfer-
ence occurs successively at a number of frequencies.
From a knowledge of these null frequencies and the
thickness of the sample, the ultrasonic velocity can be
estimated.

Other technical details of the method are given by
Bentle [49], Cline et al. [79], Chung et al. [103] and
McSkimin et al. [15]. While the electronics is capa-
ble of measurement with high accuracy, various factors
like the characteristics of the bonding material, the ac-
curacy of measurement of thickness and the accuracy
of orientation of the sample introduce errors.

The ultrasonic method yields adiabatic values of elas-
tic constants. It is by far the only method that gives elas-
tic constants of single crystals. From the single crystal
elastic constants, the isotropic bulk and shear moduli
can be computed. Alternatively, the ultrasonic method
can be used to find the sound velocities in polycrys-
talline samples from which the elastic moduli can be
determined. In this method, very often a density cor-
rection has to be applied as the polycrystalline samples
may not be packed to crystal density.

The ultrasonic method is by far the most accurate. To
cite an example, Bateman [47] has reported the elastic
constants of ZnO with an accuracy of 0.1%.

2.6. Other methods
For the sake of completeness, we shall mention a few
other methods. Though these methods have not been
used very frequently, they have been employed to study
some crystals for which data are in conflict.

(i) Ultrasonic-optic method: In this method, a trans-
parent crystal is excited into resonant vibration by a
quartz plate. The result is that the crystal acts like a 3-d
diffraction grating with respect to optical light. From
the diffraction pattern, orientation of the crystal, crystal
density and the resonant frequency, the elastic constants
are evaluated. This is known as the Schaefer-Bergmann
[104] method.
(ii) Optical scattering method: A method based on

frequency shifts of the Brilluoin components appearing
in the thermal scattering of light has been developed by
Krishnan [105] to determine the elastic constants.
(iii) X-ray diffuse scattering method: Ramachandran
and Wooster [106, 107] developed a method for deter-
mining the elastic constants of crystals from observa-
tions on the thermal diffuse scattering of X-rays. They
used the method to determine the elastic constants of
diamond, sodium chlorate and iron pyrites among other
crystals.
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2.7. Relative merits and limitations
The piston-displacement method, the shock wave
method and the X-ray diffraction methods are com-
monly employed for determination of bulk moduli
whereas the ultrasonic method is used mostly to de-
termine the single crystal elastic constants.

Bridgman was the pioneer in the development of the
piston displacement method. He was continuously re-
fining his equipment and procedure from the nineteen
twenties through forties. At a certain stage, Bridgman
himself revised his earlier data by 10–20% (Grover
et al. [108]). Vaidya and Kennedy [12] call Bridgman’s
results ‘remarkably discordant’. As mentioned in Sec-
tion 2.1, several factors related to the high pressure as-
sembly need care and correction. Vaidya and Kennedy
[12] claim that their own set-up and method are 3–10
times more precise than other methods.

Rice et al. [83] estimate an error of 0.7–3% in com-
pression data obtained from shock-wave method. The
shock-wave data has been found to be consistent with
piston-displacement data (Vaidya and Kennedy [12]) as
well as X-ray diffraction data (Drickamer et al. [86]).
However, Drickamer et al. [86] refer to the requirement
of a large number of corrections to the shock-wave re-
sults. Actually, several entries in Table I from shock-
wave data were found to be not the best.

The ultrasonic techniques are highly accurate but
they have in some cases led to dubious results. There are
also intrinsic analytical difficulties in retrieving elastic
constant data from velocity data, particularly with re-
gard to lower symmetry crystals.

3. Consistency checks for bulk moduli
Some consistency checks for bulk moduli are discussed
in this section. These are categorized as (1) phenomeno-
logical relations (2) theoretical consistency checks and
(3) empirical relations as consistency checks.

3.1. Phenomenological relations as
consistency checks

(a) Relations between elastic moduli
The bulk modulus (B), Young’s modulus (Y ), shear
modulus (G) and the Poisson’s ratio (σP) are interre-
lated as follows:

Y = 2G (1 + σP) (4)

B = Y/[3 (1 − 2σP)] (5)

σP = 1

2
− (Y/6B) (6)

The following features may be noted.

(i) If any two parameters are known, the other two can
be calculated and checked with experimental values.
(ii) The elastic moduli are all positive.

(iii) The Poisson’s ratio is positive. Further, from
Equation 6, it follows that 0 < σP < 0.5. Empirically,
σP is found to be close to 0.3 for most solids.

As an example of the use of phenomenological rela-
tions as consistency checks, we shall consider the bulk
modulus of selenium. Gschneidner [23] quoted litera-
ture values of 591 kbar and 92.7 kbar for the Young’s
modulus and the bulk modulus; the bulk modulus was
from Bridgman’s work. Substituting these values in
Equation 6, one gets a value of −0.562 for σ P which is
physically unacceptable in view of (iii) above and in-
dicates an error in the value of Y/B. Since the value of
Y is reasonable from various considerations, Gschnei-
dner concluded that there is an error in Bridgman’s
value for B for Se, which should have been much larger.
Subsequently, Mort [25] reported single crystal elastic
constants of Se from which Sirdeshmukh and Subhadra
[24] calculated the isotropic elastic moduli and obtained
the following values:

B = 174 kbar

Y = 234 kbar

σP = 0.27

This value of B is much larger than the Bridgman value.
Further, σP is +ve and close to 0.3. Thus these values
are phenomenologically consistent. The much lower
value of 92.7 kbar quoted from Bridgman’s work for
the bulk modulus of Se (hex.) has to be ignored and the
ultrasonic value of 174 kbar is recommended.

It may be mentioned that values for B of Se larger
than that reported by Bridgman were predicted by
Gschneidner [23] from an empirical relation between
B and the cohesive energy and by Sirdeshmukh [109]
by using a theoretical method; these will be discussed
later in this section. It may be also mentioned that a
value of 79 kbar reported later by Vaidya and Kennedy
[19] is much lower than Bridgman’s value and open to
the same criticism as Bridgman’s value.

It is to be noted that the condition that σP cannot be
negative is useful only in finding whether the B value
is physically valid or not. At best, it helps in estimating
a lower bound for B but it cannot estimate, by itself,
the correct value of B.

We may have occasion to refer to the Poisson’s ratio
again in Section 4.

(b) Relations between elastic constants
The quadratic stress (or strain) energy is positive def-
inite. This condition results in interrelationships be-
tween the single crystal elastic constants. These have
been discussed by Sundara Rao [110], Born and Huang
[111], Nye [112], Alers and Neighbours [113] and Al-
ton and Barlow [114] for various crystal classes. We
shall refer to these relationships in analyzing data on
some crystals in Section 3.2(d)(iii) and in Section 4.

3.2. Theoretical consistency checks
The bulk modulus may be calculated by theoretical
methods and the calculated value may be compared
with the the experimental values. Alternatively, the ex-
perimental bulk modulus may be used to calculate other
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physical properties theoretically and these calculated
properties may then be compared with their respective
experimental values. Some approaches of this type are
discussed below.

(a) Knopoff’s universal relation
By an interpolation of the equations of state obtained
from the finite strain theory and the Thomas-Fermi
model, Knopoff [115] derived an expression for the
bulk modulus B of a solid in terms of the atomic volume
(Va), atomic number (Z ) and some universal constants.
The relation is:

[B Z−10/3][Z Va]7/3 = [π10/362/3/15]a3
0 e2

= 34.17 Mbar Å
7

(7)

For compounds, Va is the mean atomic volume and Z
is given by

Z2/3 =
∑

i

ni Z
5/3
i

/
∑

i

ni Z i (8)

where ni is the number of times an atom i with atomic
number Z i occurs in the chemical formula.

The various reported values of B for selenium are
given in Table I. Since Gschneidner [23] had expressed
doubts regarding the soundness of the Bridgman value
on the basis of the “+ve σ P criterion”, Sirdeshmukh
[116] applied Knopoff’s method to estimate the bulk
moduli of some elemental solids including selenium.
These calculated values are given in Table V along with
experimental values quoted by Gschneidner [23]. It is
seen that agreement between experimental and calcu-
lated values is good in the case of Zr and W but oth-
erwise there are differences of as much as 30–50% in
other cases. The largest difference occurs in the case
of selenium. The calculated value of 526 kbar is much
larger than Bridgman’s value of 92 kbar. Further, the
calculated value combined with the Young’s modulus
value quoted by Gschneidner yields a value of 0.3 for
the Poisson’s ratio.

However, as mentioned in Section 3.1, later determi-
nation of elastic constants of Se has led to a consistent
set of elastic moduli which yield a value of 174 kbar for
the bulk modulus and a Poisson’s ratio value of 0.27. In
view of the high accuracy of ultrasonic results, we have
to infer that the value obtained from Knopoff’s relation
is an overestimate.

TABL E V Values of B for some elemental solids

B (kbar)

Element Calc. from Equation 7 Expt.

Al 645 735
Ti 709 1075
Mg 270 361
Zr 901 850
W 4000 3333
Li 80 118
Se 526 92.7

Knopoff’s method is used to analyse the data on
MnF2 and Fe3O4. Values of 90 kbars and 2800 kbars
respectively are obtained for the bulk modulus of these
two compound crystals. It is found that the value for
MnF2 is lower than both the values given in Table I
but between the two values, it is closer to the pis-
ton displacement value. In the case of magnetite, the
Knopoff value is much higher than all the values quoted
in Table I but is closer to the piston displacement and
X-ray values.

Knopoff’s method is simple and universal; it is inde-
pendent of bonding and structure. Yet, in view of the
cases discussed above, we may conclude that Knopoff’s
method may be used to provide corroborative rather
than conclusive evidence.

(b) Bulk modulus from molecular data
From simple considerations, it can be shown that there
is a direct relation between the bulk modulus (B) and
the interatomic force constant (k). Waser and Pauling
[117] showed that that

B = (Nr2/9Vc) k (9)

where N is the number of equivalent bonds. Yean and
Riter [118] proposed an equivalent relation:

B = (2ρN0r2/9A) k (10)

While Waser and Pauling [117] used Equation 9 to
estimate the force constant of several elemental and
compound crystals from known values of their bulk
modulus, Yean and Riter [118] proceeded in the re-
verse direction; they estimated the bulk modulus from
Equation 10 using known values of the force constant.
In doing so, Yean and Riter made the important as-
sumption that the interatomic force constant between
two atoms in the solid state is the same as the stretching
force constant for the same two atoms in the molecular
state. The stretching force constant for molecules can be
evaluated from i.r. and Raman spectroscopic data. The
force constants and bulk moduli estimated by Yean and
Riter [118] for some systems are given in Table VI.

The value of 960 kbar estimated for the bulk mod-
ulus of Ge compares well with Bridgman’s value of
787 kbar quoted by Gschneidner [23] and the value
of 778 kbar quoted by Simmons and Wang [7] from
ultrasonic data. Further, Yean and Riter predicted the
value of 2240 kbar for the bulk modulus of SiC without
the knowledge of any experimental value. However,

TABLE VI Stretching force constants (k) and estimated bulk moduli
(B) for some crystals

k B from Equation 10
Molecule (millidyne/cm) Crystal (kbar)

C2H6 4.36 C (diamond) 4070
Si2H6 1.73 Si 1060
Ge2H6 1.62 Ge 960
Sn2H6 1.40 Sn (α) 720
CH3Si H3 2.19 SiC (β, cubic) 2240
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the bulk modulus of SiC was earlier determined by
Einspruch and Clairborne [119] who obtained a value
of 2140 kbar from ultrasonic measurements on a poly-
crystalline sample. Thus, the method seems to work
well. Comparing the value of the bulk modulus of Si
calculated from the spectroscopic data with the values
given in Table I, Yean and Riter recommended rejection
of the abnormally large literature value of 3120 kbar.

It is clear that this method is suitable only for molec-
ular and crystalline systems having a common bond and
which are amenable to spectroscopic measurements.

(c) Bulk modulus from Szigeti’s theory
of dielectrics
Considering the dielectric polarization in ionic crystals,
Szigeti [120] derived the following equation:

B = (1/ψ) = [
r2µω2

0(ε0 + 2)
]/

[3u(n2 + 2)] (11)

Using appropriate values for the various quantities in
Equation 11, Szigeti calculated the bulk modulus. The
calculated and experimental values of the bulk modulus
(Bcalc. and Bexp. respectively) and the ratio Bexp./Bcalc.
for some crystals are given in Table VII.

The values of Bexp./Bcalc. for the alkali halides are all
close to unity showing that Equation 11 works well, par-
ticularly for perfectly ionic crystals like alkali halides.
For MgO, Szigeti got a low value for Bexp./Bcalc.. An-
derson and Glynn [121] felt that the value of ω0 used
by Szigeti was inaccurate. They redetermined ω0 from
the reflectivity curve for MgO and recalculated B. The
revised value for Bexp./Bcalc. is, again, close to unity.

This method is now applied to analyse the bulk mod-
ulus data for CaO and SrO given in Table I. For CaO, the
value of Bexp./Bcalc. obtained by Szigeti using Bridg-
man’s value for B is low. The alkaline earth oxides
are not as ionic as the alkali halides and some devia-
tions Bexp./Bcalc. from unity can be expected. But the
value 0.13 obtained by Szigeti is too low. The values
for this ratio have been recalculated using the other ex-
perimental values of the bulk modulus for CaO given
in Table I. It is seen that with the new values of B, the
ratio Bexp./Bcalc. has a value ∼0.66 which is much bet-
ter than the Szigeti value of 0.13. Clearly, Equation 11

TABL E VII Calculated and experimental values of bulk moduli for
some crystals

Crystal Bcalc (Kbars) Bexp (kbars) Bexp/Bcalc (kbars)

LiF 670 670 1.00
NaCl 242 239 0.99
KBr 160 152 0.95
MgO 3570 1690 0.47

1640∗ 1.04∗
CaO 1660 218 0.13

1120∗ 0.67∗
1090∗ 0.65∗

SrO 680 880∗ 1.29∗
1183∗ 1.73∗

∗For starred data, see discussion in text; rest of the data are from Szigeti
[120], reproduced by Anderson and Glynn [121].

is able to show that Bridgman’s value of bulk modu-
lus of CaO is in error and the more recent values are
reasonable.

For SrO, again, Szigeti [120] calculated the value of
B from Equation 11; data on Bexp. was not available to
him to make a comparison. Now that the bulk modulus
of SrO has been determined, the values of Bexp./Bcalc.
have been calculated using data in Table I leading to
values of 1.29 and 1.73; the lower value of 880 kbar
(Son and Bartels [39]), appears more reasonable than
the larger value of 1183 kbar (Weir, [10]) for the bulk
modulus of SrO.

(d) Theoretical calculation of physical
properties using the bulk modulus
as an input
(i) Cohesive energy. For an ionic crystal, the interaction
energy uij between two ions i and j may be represented
by

uij = −zizje
2r−1

ij − cij(6)r−6
ij − dij(8)r−8

ij

+ bibj fij exp(−rij/ρ) (12)

where the terms represent the Coulomb, dipole-dipole,
dipole-quadrupole and repulsion interactions respec-
tively (for the meaning of each term, see Tosi, [122]).
For a crystal as a whole, the cohesive energy is obtained
by summation over all ions. The cohesive energy may
be represented by:

U = Ue + Ud(6) + Ud(8) + Ur (13)

where U is the cohesive energy and the four terms,
again, represent the contributions of the four interac-
tions. The parameters in the expression, particularly
those in the repulsion term, are calculated from the con-
ditions:

dU/dr = 0 (14)

r2(d2U/dr2) = 9VB (15)

where r is the interatomic distance, V the molar vol-
ume and B the zero pressure bulk modulus. Once these
parameters are known, one may go back to Equation 13
to get the cohesive energy. In this way, the bulk mod-
ulus comes into the calculation of the cohesive energy.
Comparison of the calculated value and the ‘experi-
mental’ value of cohesive energy helps to judge the
reliability of the value of the bulk modulus used as
input.

Benson et al. [123] employed this approach in the
case of ThO2 and UO2. They assumed various val-
ues of B to calculate U from Equation 13 and con-
structed a B − U plot (Fig. 6) from which they read
off the values of B corresponding to the experimen-
tal values of U (−2413 and −2461 kcal mole−1 for
ThO2 and UO2 respectively, quoted by Benson et al.
[123]). These values are given in Table VIII along with
experimental values which were available from ultra-
sonic measurements on sintered samples. There is a
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TABL E VII I Bulk moduli of ThO2 and UO2

B (kbar)

Method ThO2 UO2

Expt. (polycrystalline samples) 2403 2127
Predicted from B − U plot 2770 2958
Expt. (single crystal) 1930 2127
Minimum value predicted from B-σ plot 1500 2000

Figure 6 Bulk modulus (B) versus cohesive energy (U ) plot for ThO2

and UO2.

difference of 10–30% between these two sets of values.
Benson et al. [123] suggested that this difference could
be because the experimental B values were based on
experiments on sintered samples. However, later accu-
rate ultrasonic measurements on single crystals yielded
values which show the same (or even larger) difference
from the B − U plot values. Thus, the difference be-
tween experimental values and those from the B − U
plot persists.

We may cautiously conclude that the procedure of
calculating the bulk modulus by comparing the calcu-
lated value of the cohesive energy with the ‘experimen-
tal’ value leads only to an ‘order-of-magnitude’ check
on the B-values.

(ii) Surface energy. Starting with Equation 12, one can
proceed to obtain an expression for the surface energy.
The expression depends on the structure of the crystal
and also the plane for which the surface energy is to be
calculated. As in the case of the cohesive energy, the
surface energy will also have four terms:

σ = σe + σd(6) + σd(8) + σr (16)

Benson et al. [123] calculated σ for the (111) plane of
ThO2 and UO2 assuming different values of the bulk
modulus to evaluate the repulsion parameters. The ex-
act expressions for Equation 16 for the (111) plane of
the fluorite structure are worked out by Benson and
Dempsey [124].

The variation of σ with the assumed value of B is
shown in the B-σ plot (Fig. 7). If the surface energy
is known from experiment, one may read off the value
of B from the plot corresponding to the experimental
value of σ . Experimental values of σ are, however, not
known for ThO2 and UO2. Some information can still

Figure 7 Bulk modulus (B) versus surface energy (σ ) plot for ThO2 and
UO2.

be extracted from the B-σ plot. It can be seen from
Fig. 7 that σ depends on B in a sensitive manner. In
fact, σ assumes +ve and −ve values for different ranges
of B. Physically, σ cannot assume −ve values. Thus,
we can read off the B value for which σ changes from
+ve to −ve values. This is the minimum value for B.
The correct value for B will be larger than this value.
These minimum values estimated from Fig. 7 are given
in Table VIII. The two sets of experimental values of
B as well as those estimated from the B − U plot are
all larger than the minimum value from Fig. 7. Thus,
surface energy calculations can only predict the lower
bound for the bulk modulus and serve only as an order-
of magnitude check on bulk modulus values.

(iii) Calculation of single crystal elastic constants with
bulk modulus as input. The Krishnan-Roy theory [125]
provides a method for evaluation of elastic constants of
ionic crystals. Krishnan and Roy assume the follow-
ing simple expression for the cohesive energy of ionic
crystals like the alkali halides:

U = N0 [−αMz2e2/r ] + b exp(−r/ρ) (17)

where αM is the Madelung constant, and b and ρ are
constants in the repulsion term. The parameter r/ρ may
be denoted by δ. Application of Equations 14 and 15 to
Equation 17 leads to

B =
[

z2αMe2

9V r

]
[δ − 2] (18)

δ can be determined from the bulk modulus by the use of
Equation 18. Krishnan and Roy obtained the following
relations for the elastic constants:

C11 = [2αM(1 + δ) − 6X ](z2e2/r4), (19)

C12 = C44 = 3(X − αM) (z2e2/r4), (20)

X is a lattice sum which depends on the crystal struc-
ture. For the NaCl structure, X = 3.14. Thus, with B, as
input, δ can be evaluated and with δ as input, the elastic
constants C11 and C12 can be evaluated. The equality
of C12 and C44 is a consequence of the assumption of
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TABL E IX Values of elastic constants of LiH from Equations 19 and
20

B (kbar) C11 (kbar) C12 = C44 (kbar) C11/C12

500 580 460 1.25
357 140 460 0.29
270 −110 460 −0.24
228 −240 460 −0.52

central forces. Krishnan and Roy calculated the elas-
tic constants of several alkali halides and found good
agreement with experimental values. Mathur et al. [38]
calculated the elastic constants of alkaline earth chalco-
genides from the Krishnan and Roy equations. Sird-
eshmukh and Subhadra [126] applied the Krishnan-
Roy theory to some transition metal oxides with NaCl
structure.

Subhadra and Sirdeshmukh [127] used the method
of Krishnan and Roy [125] to analyse the several dif-
fering values of the bulk modulus of lithium hydride
which has the NaCl structure and is considered highly
ionic. Apart from the values 270, 228 and 357 (kbar)
quoted in Table I, Pretzel et al. [128] quoted values of
400, 312 and 208 (kbar) for the bulk modulus of LiH by
other methods. Subhadra and Sirdeshmukh [127] cal-
culated the values of the elastic constants of LiH from
Equations 19 and 20 using values of bulk moduli in
the range 200–500 kbar as input. Some of their results
are given in Table IX. They plotted the values of C11
and C11/C12 against the values of B used as input. The
plots (Figs 8 and 9) are smooth curves. Subhadra and

Figure 8 B versus C11 plot for LiH.

Figure 9 B versus C11/C12 plot for LiH.

Sirdeshmukh [127] would have used experimental val-
ues of C11 and C12 to read off the correct value of B.
However, such data was not available to them.

An interesting feature of the C11 vs. B and (C11/C12)
vs. B plots is that both C11 and C11/C12 are very sensi-
tive to the value of B assumed for the calculations. In
fact C11 and C11/C12 assume −ve values for a range of
B values. Subhadra and Sirdeshmukh [127] invoked the
stability conditions proposed by Born and Huang [111]
and Alers and Neighbours [113] according to which, in
cubic crystals

C11 > 0 (21)

and

(C11/C12) > 1 (22)

From Figs 8 and 9, it is seen that for both the stability
conditions to be satisfied B should be greater than 465
kbar. Thus, 465 kbar is the lower bound for the bulk
modulus of LiH. It may be noted that the Krishnan-
Roy theory assumes central forces, neglects the Van
der Waal interactions and treats the crystal as com-
pletely ionic. Subsequent to the analysis by Subhadra
and Sirdeshmukh [127], Haussuhl and Skorezyk [129]
measured the single crystal elastic constants of LiH.
They observed a large difference in the values of C12
and C44 indicating considerable departure from ionic-
ity. In view of these limitations, it may not be proper
to fix a sharp limit for the lower bound of B. Thus, the
value of 357 kbar reported by Stephen and Lilley [31]
may be treated as the best among the several B values.

3.3. Empirical relations as
consistency checks

There are several empirical relations between the bulk
modulus and other physical properties. Although these
correlations do not have a rigorous theoretical support,
they are otherwise well-established and can be used to
check data on bulk moduli. Some of these empirical
relations are discussed below.

(a) Relation between bulk modulus
(B) and volume (V )
Keyes [130] showed from dimensional analysis that the
bulk modulus varies inversely as a4 where a is the lattice
constant. He verified this relationship for crystals with
zinc blende structure. Mitra and Marshall [131] found
that for alkali halides the bulk modulus is inversely
proportional to a3. Anderson and Nafe [132] drew log
B vs. log V plots for several systems and proposed a
relation:

BV = constant (23)

Subsequently linear log B vs. log V plots have been
reported for several systems (Table X).

Anderson and Nafe [132], Anderson and Ander-
son [135] and Jayaraman et al. [133] showed that a
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TABL E X Systems for which linear log B vs. log V plots have been
reported

System(s) Reference

Oxides, alkaline earth fluorides Anderson and Nafe [132]
Wurtzite type crystals Cline et al. [79]
Alkali halides, divalent chalcogenides and Jayaraman et al. [133]

trivalent rare earth chalcogenides
Divalent oxides and lead chalcogenides Sirdeshmukh and

Subhadra [134]
Uranium pnictides Leger et al. [94]
Rare earth chalcogenides Vedal et al. [41]

relationship close to Equation 23 can be derived on the
basis of interatomic forces. Neumann [136] suggested
that a better fit with experimental data is obtained by
using a modified equation:

B = ba−m (1 − g fi) (24)

where ‘a’ is the lattice constant, fi the Phillips ionicity
and b, m and gare constants for a family of crystals.

However, the simple log B vs. log V plots have
proved quite useful. Jayaraman et al. pointed out that
these plots are useful in scaling bulk modulus data, in
estimating ionic charge and in predicting bulk moduli
where they are not available. Sirdeshmukh and Sub-
hadra [134] pointed out another application of the log
B − log V plots viz. in sifting the correct value of bulk
modulus when several differing values are reported.
Thus, they were able to show that among the three val-
ues for PbSe given in Table II, the value 3470 kbar
deviates severely from the log B vs. log V plot (or the
B vs. V −1 plot) and is to be disregarded. Similarly,
Vedel et al. [41] showed that between the two values
for CeS given in Table I, the value 820 kbar is close to
the log B vs. log V plot for the rare earth chalcogenides
in contrast to the other value of 1300 kbar which shows
a strong deviation.

The log B vs. log V plots have now been redrawn
for the alkali halides with NaCl structure (Fig. 10), al-
kali halides with cesium chloride structure (Fig. 11),
NaCl-type oxides (Fig. 12), chalcogenides with NaCl
structure (Fig. 13) and wurtzite type chalcogenides
(Fig. 14) including several new B-values. It is seen

Figure 10 Plot of log B versus log V for NaCl type alkali halides.

Figure 11 Plot of log B versus log V for CsCl type alkali halides.

Figure 12 Plot of log B versus log V for oxides with NaCl structure.

Figure 13 Plot of log B versus log V for divalent chalcogenides.

Figure 14 Plot of log B versus log V for wurtzite type chalcogenides.
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that in Fig. 10, the plot is able to differentiate between
the several largely differing values of B for LiI and
also in the case of NaI where the difference is about
25%. Again in Fig. 11, the plot is able to show that in
the case of CsBr, between the three values differing by
about 60%, the largest value deviates very much from
the plot and the two lower values are preferable. Fig. 12
clearly indicates that the Bridgman value of 218 kbar
for CaO is to be discarded in comparison with the other
values which are larger by a factor of 5. However, in
the case of SrO, the deviation of the data point for the
larger value of the bulk modulus is only marginal. In
Fig. 13, the plot clearly shows that the largest among
the B values for PbSe and the lowest among the B
values for SmS deviate too much from the plot and
deserve to be ignored. However the plot does not dif-
ferentiate between the different data for CaS and PbTe
with the same clarity. Lastly, in Fig. 14, the lesser value
for ZnO is clearly off the plot but the same cannot be
said about the different data points for BeO, CdS and
CdSe.

Thus, the log B vs. log V plots can be effectively
used to distinguish different B values particularly if the
differences are large.

(b) Relation between bulk modulus and
cohesive energy of elements
Gschneidner [23] pointed out that an empirical linear
relation exists between the cohesive energy U and the
bulk modulus of elements. The relationship is of the
type

U = mB + b (24)

where m and b are constants for a family of related
crystals.

Gschneidner [23] plotted the values of Uagainst B
for the elements S, Se, Te and Po. He found that the
data point for Se (based on Bridgman’s results) deviates
severely from the straight line joining the data points for
the other three elements. The value of B read off from
the straight line suggested a much larger value for B of
Se than the Bridgman value. It is shown in other sec-
tions that other consistency checks also supported this
suggestion and a later ultrasonic measurement indeed
resulted in a much larger value.

The linear relation between U and B is all too em-
pirical. In fact, Gschneidner [23] pointed out that the
slope m of the straight line plot has +ve as well as −ve
values for different systems. Thus the plot for any fam-
ily must be clearly established before it can be put to
use to analyze B values for a given solid.

(c) Empirical relation between bulk
modulus and thermal expansion
Sirdeshmukh [109] proposed a linear relation between
the compressibility (1/B) and the product of the lin-
ear coefficient of expansion (α) and volume (V ). He
showed linear plots of αV vs. (1/B) for several fami-
lies of metals and the alkali halides.

(d) Relation between bulk modulus and
Debye temperature
The Debye temperature is empirically given by:

θ = cB1/2ρ−1/6m−1/3 (25)

where c is a constant. This relation is known in literature
as the Madelung formula. Deus and Schneider [137]
modified this relation as follows

θ = a1x + a2 (26)

where x is (B1/2ρ−1/6m−1/3) and a1 and a2 are con-
stants for a family of crystals.

(e) Relation between bulk modulus
and hardness
Reddy et al. [138] proposed an empirical relation be-
tween the bulk modulus, the hardness, the refractive
index and Phillips ionicity as follows:

B = cHn0.13 fi (27)

where c is a constant. The relation was found to work
well in ternary chalcopyrites of the AIBIIICVI and
AIIBIVCV types with appropriate values for the con-
stant c.

4. Consistency checks for single crystal
elastic constants

As mentioned in Section 2, single crystal elastic con-
stants Cij are almost invariably determined by ultrasonic
methods which are highly accurate. While the velocity
determination, per se, is accurate, inaccuracies enter
by way of factors like (i) sample history, wall reflec-
tions and bonding problems and (ii) analytical difficulty
in converting velocities into Cij’s. Several examples of
strong differences in reported values of Cij’s are cited
in Tables II–IV.

In this section, some consistency checks are consid-
ered which facilitate sifting of correct data from several
reported values of elastic constants. Again, the checks
are based on (i) phenomenological constraints and (ii)
use of Cij’s to calculate other physical properties.

In analyzing data on single crystal elastic constants
use is also made of inter-relations between elastic con-
stants resulting from stability conditions. Some of these
relations and constraints are as follows:

(a) Cubic (Born and Huang [111]; Alers and
Neighbours [113]):

C11, C12, C44 > 0; C11 − C12 > 0

(b) Hexagonal (Nye [112]):

C44 > 0; C11 > |C12|; (C11 + C12)C33 > 2C2
13
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(c) Tetragonal (Alton and Barlow [114])

C11, C33, C44, C66 > 0; C11 > |C12|;
C11C66 > C2

16; C11C33 > C2
13

Alers and Neighbours [113] pointed out that for all crys-
tal classes the diagonal elements of the elastic constant
matrix are positive. They also discussed the stability
conditions for the trigonal class. Sundara Rao [110] dis-
cussed the inter-relationships between the elastic con-
stants for orthorhombic crystals.

Some of these constraints are invoked while analyz-
ing data on some cubic, tetragonal and hexagonal crys-
tals.

4.1. Cubic crystals
In the first three crystals for which data are quoted in
Table II, the value of C12 differs in sign. Since the Pois-
son’s ratio equals C12 /(C11 + C12) a negative value for
C12 results in a −ve value for the Poisson’s ratio. As
discussed in Section 3.1, phenomenologically, σP can-
not be −ve. Poisson’s ratio values for different sets of
elastic constants are given in Table II. The sets of elastic
constants for FeS2, NaClO3 and PbTe with −ve values
of C12 can be straight away disregarded.

In the last case viz., PbSe, the elastic constants re-
ported by Chudinov [67] are larger than the values from
the other two sources by a factor of 3 in the case of C11
and a factor of 20 in the case C12. This results in the bulk
moduli differing by a factor of about 7. As mentioned
in Section 3.3(a), the log B vs. log V plot (Fig. 12)
clearly shows that the larger value of B does not fit
into the correlation and hence the corresponding set of
elastic constants (Chudinov [67]) has to be ignored.

4.2. Tetragonal crystals
(i) Zircon
In Table III, three sets of Cij’s are quoted for zircon. Sets
(ii) and (iii) broadly agree with each other, although
there are differences between the values in the two sets
for C11, C12 and C44. However, both sets differ from
set (i) by factors ranging from 1.5 (C66) to 30 (C13).

Sirdeshmukh and Subhadra [139] analysed these dif-
fering results using several approaches. Their results are
given in Table XI. Sirdeshmukh and Subhadra [139]
calculated the Voigt-Reuss-Hill bulk modulus from the

TABL E XI Bulk modulus (B), Debye temperature (θ ) and Gruneisen
constant (γ ) of zircon

B(kbar) θ (K)

Set From Cij From other methods From Cij From sp. heats γ

i 190 300 0.11
ii 2040 601 0.89
iii 2030 725 600–900c 0.99

3731a (X-ray)
3875a (Neutron)
2702b

aWorlton et al. [141]; b Knopoff [115]; c Ozkan and Cartz [142].

three sets of Cij’s and compared the values with those
obtained from other independent methods. It is seen that
the value of the bulk modulus from set (i) is very low. It
is lower than the values from sets (ii) and (iii) by a factor
of 8–9. It is also lower than typical values for several
mineral crystals quoted by Anderson et al. [140]. The
bulk modulus of zircon has been estimated by other in-
dependent methods. These are given in Table XI. It may
be noted that the value from set (i) is in disagreement
with all these values whereas the values from sets (ii)
and (iii) show at least an order-of-magnitude agreement
with these independently estimated values. This com-
parison of bulk moduli clearly indicates that the elastic
constants in set (i) are unacceptable.

Sirdeshmukh and Subhadra [139] further used the
bulk moduli to calculate the thermal Gruneisen constant
γ given by

γ = 3αVB/CV (28)

Using the values of the bulk moduli from the three sets
together with values for the other quantities taken from
literature, Sirdeshmukh and Subhadra [139] obtained
the values given in Table XI for γ . In analyzing the
results on γ , Sirdeshmukh and Subhadra [139] used
the empirical fact that for most of solids, the value of
γ lies in the range 1–3. On this basis again, the value
of γ = 0.11 originating from set (i) is far too low. On
the other hand the other two values of γ originating
from sets (ii) and (iii) are close to ∼1 and indicate the
superiority of Cij’s in sets (ii) and (iii).

Finally, Sirdeshmukh and Subhadra [139] calculated
the Debye temperature of zircon from the elastic con-
stants using Anderson’s [143] method. These values
are included in Table XI along with values from spe-
cific heats. The value of Debye temperature from set
(i) is about half the values from sets (ii) and (iii). Also,
the values from sets (ii) and (iii) are within the range of
values quoted from specific heat data unlike the value
from set (i). This again indicates the superiority of sets
(ii) and (iii) vis-a-vis set (i).

This analysis of the elastic constants of zircon has
clearly established that the elastic constants in set (i) are
physically unacceptable. This analysis is an example of
a comprehensive check on conflicting elastic constant
data.

(ii) KDP type crystals
Two sets of elastic constants each for potassium dihy-
drogen phosphate (KDP) and ammonium dihydrogen
phosphate (ADP) are given in Table III. In both cases
there are strong differences in the values of C13. More
seriously, there is a difference in the sign for C12. As
mentioned earlier, for tetragonal crystals, one stability
condition is C11 > |C12|. Thus there is no constraint
on the sign of C12. Both sets satisfy the requirement
C11 > |C12|.

The bulk moduli calculated from the elastic constants
also show a difference of 40% in the case of ADP and
a difference of 80% in the case of KDP. However, the
bulk moduli are not known from any other independent
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method. Being an important family of crystals, the
elastic constant data of these crystals deserves further
analysis.

(ii) Strontium molybdate
Strontium molybdate (SrMoO4), along with CaWO4
and CaMoO4, belongs to T II Laue symmetry. There are
several intrinsic difficulties in the determination of elas-
tic constants of these crystals. Firstly, there are seven
(instead of the usual 6) independent elastic constants;
the existence of the seventh elastic constant C16 com-
plicates measurements. Secondly, the axes of acoustic
symmetry in the (001) plane do not coincide with the
〈100〉 and 〈110〉 directions which makes the determi-
nation of C16 ambiguous. Thirdly, the equations for the
elastic constants C11, C66, C12 and C16 have four dif-
ferent solutions.

In Table III, three sets of elastic constants are quoted
for SrMoO4. The first set is reported by Chung and Li
[74]. Chung and Li [74] gave in their paper the four
solutions for C11, C66, C12 and C16 referred earlier.
These are reproduced in Table III. It can be seen that
the values of Cij’s in these solutions not only differ by
several factors but also in sign. Chung and Li [74] chose
the first of these solutions as the most reasonable, on
the basis of the stability conditions discussed by Alton
and Barlow [114].

Comparing the values of Cij’s reported by Chung and
Li [74] with Cij’s of the related crystals CaWO4 and
CaMoO4, James [75] noticed a similarity in the values
of all Cij’s except C16 and C66. For crystals with this
symmetry, the following relation must hold

3∑

i=1

v2
i = S1/ρ = (C11 + C44 + C66)/ρ (29)

where ρ is the density, S1 a constant and vi are velocities
of propagation of sound waves in the x, y plane. James
[75] found that this condition is satisfied in CaWO4 and
CaMoO4 but not by the Cij’s of SrMoO4 reported by
Chung and Li [74]. James [75] carried out a reanalysis
of the velocity data of Chung and Li [74] by calculating
the parameter |SUMSQ| defined by

|SUMSQ| =
n∑

n=1

[
v2

i (calc)

v2
i (meas)

− 1

]2

(30)

The input Cij’s for calculating vi were varied till
|SUMSQ| was minimum. The values thus obtained by
James [75] are given in Table III as set (ii); the new C16
and C66 values are different from those given by Chung
and Li [74] but are comparable with those for CaWO4
and CaMoO4.

The Cij’s of SrMoO4 were subsequently redeter-
mined by Farley et al. [76] taking care regarding the
choice of axes which resulted in set (iii). Farley et al.
[144] showed that the sign of C16 is negative for all
crystals with scheelite structure.

4.3. Trigonal and hexagonal crystals
(i) Calcite
Calcite is trigonal with six independent elastic con-
stants. There are two reports on the low temperature
elastic constants of calcite. The values from these two
reports are given in Table IV. These values were read off
from a diagram given by Dandekar and Ruoff [78] and
pertain to a temperature of 160 K. This is the only crys-
tal for which the elastic constants have been given in
the Sij notation in this paper. This has been done as the
data are given in this form in the original papers and
conversion into Cij’s may introduce errors. There are
differences of 30, 60 and 10% in the values of S14, S13
and S44. Dandekar and Ruoff [78] calculated the bulk
modulus for the two sets and found values of −6300
and 700 kbar. The negative value of bulk modulus is
phenomenologically unacceptable and hence the set of
elastic constants reported by Ramamurthy and Reddy
[77] is to be rejected.

(ii) BeO (Hex.)
For hexagonal crystals, there are only five independent
elastic constants. The sixth constant C66 is sometimes
given as it is generally measured independently; it is
equal to (C11 − C12)/2.

The two sets of Cij’s for BeO given in Table IV
yield B values which agree with each other and are
close to the log B vs. log V line (Fig. 14). The De-
bye temperatures calculated from these two sets also
are close to each other and with the specific heat value.
However, there is a difference of 32 and 35% in the
values of C12 and C13 which is much larger than the
estimated errors of 5–10% mentioned by Bentle [49]
and Cline et al. [79]. Bentle obtained the values 1520
and 1630 kbar for C66 but retained the lower value.
As mentioned, C12 is obtained from the difference be-
tween C11 and 2 C66. If the value 1630 kbar is used
for C66, the difference between the values of C12 in
the two reports will reduce to 12% which is reasonable.
The difference in C13 however remains. The solution of
the velocity equation gives positive and negative values
for C13. But only the positive value is retained, though
there is no physical reason for doing so (Cline et al.
[79]).

(iii) LaCl3 (Hex.)
In Table IV, values of Cij’s for LaCl3 are given. Sets (i)–
(iii) are theoretical values calculated by Stedman and
Newman [80] from three models. There are differences
in the Cij values for the three models ranging from 10%
(C13) to 100% (C66). These differences may be of sig-
nificance in relation to the models. The bulk moduli
calculated from these three sets are not very different.
So, it is not possible to differentiate between these sets
on the basis of bulk modulus calculations.

Carlson et al. [81] calculated the Debye temperatures
from these three sets of elastic constants and obtained
values 600, 500 and 507 K respectively. The marginal
difference in these values is consistent with marginal
differences in the Cij’s from which they originate.
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However, all these Debye temperature values are larger
by a factor of 3–4 than the value of 145 K obtained
from specific heat data. Carlson et al. [81] pointed
out that the θ from elastic constants can be reconciled
with the θ from specific heats if all the elastic con-
stants are reduced uniformly by a factor of 16. These
reduced Cij’s are shown as set (iv). They do yield a
Debye temperature of ∼150 K which is close to the
specific heat value. The bulk moduli pertaining to sets
(i)–(iii) have values in the range 1980–2100 kbar. On
the other hand, set (iv) yields a bulk modulus value of
128 kbar.

Experimental determination of the bulk modulus and
the elastic constants will help to sort out the differences
in various sets of elastic constants of LaCl3.

5. Summary and conclusions
Several methods are now available for the determina-
tion of elastic moduli and elastic constants with a high
degree of accuracy. In spite of the accuracy of the meth-
ods, there are numerous cases where the values of bulk
moduli and single crystal elastic constants reported by
different workers differ by amounts far exceeding the
limits of errors. Several such examples are cited. When
such differences exist, it is necessary to subject the re-
ported data to consistency checks.

Several consistency checks are reviewed to analyse
data on bulk modulus. These may be broadly classified
as (i) phenomenological constraints (ii) theoretical esti-
mates of bulk moduli (iii) theoretical estimates of other
physical properties using the bulk modulus as input and
(iv) empirical checks.

Differing results on the single crystal elastic con-
stants are, again, analysed by using phenomenologi-
cal constraints and by comparison of properties cal-
culated from the elastic constants with independently
determined values.

A common feature of most of the consistency checks
discussed here is that they are able to distinguish be-
tween values (or data sets) which differ severely and
cannot be forcefully applied when the differences are
small. In the analysis of single crystal elastic constants,
the consistency check of calculating other physical
properties like the bulk modulus and Debye temper-
ature has the limitation that these calculations involve
several or all elastic constants. Thus, it is possible to
comment on an entire set of elastic constants and not
on each elastic constant. Another feature is that some
of the checks may help to single out an unacceptable
value but may not enable us to decide which among the
acceptable values is best. Finally, a single check may
not be enough to analyse data; application of several
criteria may yield better information; the case of zircon
is an example.

It is noticed that in most cases where faulty data have
been reported, consistency checks have been applied by
other than those who generated the data. Since several
consistency checks are now available, it is desirable that
whenever data on elastic properties are generated, they
are subjected to one or more consistency checks before
the data pass into literature.

References
1. R . F . S . H E A R M O N , Rev. Mod. Phys. 18 (1946) 409.
2. Idem., Adv. Phys. 5 (1956) 323.
3. Idem., “Landolt Bornstein Tables,” (Springer Verlag, New York,

1966) Vol. I, Group III, p. 1.
4. Idem., “Landolt Bornstein Tables,” (Springer Verlag, New York,

1969) Vol. II, Group III, p. 1.
5. H . B . H U N T I N G T O N , Solid State Phys. 7 (1958) 213.
6. K . S . A L E X A N D R O V and T. V. R Y Z H O V A , Sov. Phys.—

Crystallogr. 6 (1961) 228.
7. G . S I M M O N S and H. W A N G , “Single Crystal Elastic Con-

stants: A Handbook” (MIT Press, London, 1971).
8. P . W. B R I D G M A N , Proc. Amer. Acad. Arts and Sci. 58 (1923)

165.
9. Idem., “The Physics of High Pressures” (Bell & Sons, London,

1931).
10. C . E . W E I R , J. Res. Natl. Bureau Stand. 56 (1956) 187.
11. D . R . S T E P H E N S , J. Phys. Chem. Solids 25 (1964) 423 .
12. S . N . V A I D Y A and G. C . K E N N E D Y , J. Phys. Chem. Solids

31 (1970) 2329.
13. S . B H A G A V A N T A M and J . B H I M A S E N A C H A R , Proc.

Roy. Soc. (London) A187 (1946) 381.
14. R . S . K R I S H N A N, V. C H A N D R A S E K H A R A N and E. S .

R A J A G O P A L , Nature 182 (1958) 518.
15. H . J . M C S K I M I N, P . A N D R E A T C H J R. and P . G L Y N N ,

J. Appl. Phys. 43 (1972) 985.
16. “INTERNATIONAL. CRITICAL TABLES” (McGraw Hill, New

York, 1927) Vol. 3.
17. D . J . B O L E F , J. Appl. Phys. 32 (1961) 100.
18. G . C . K E N N E D Y , quoted in Ref. [12].
19. S . N . V A I D Y A and G. C . K E N N E D Y , J. Phys. Chem. Solids

33 (1972) 1377.
20. R . N K E E L E R , quoted in Ref. [12].
21. E . G R U N E I S E N , “Handbuch der Physik,” (Springer Verlag,

Berlin, 1926) Vol. 10.
22. R . W. L Y N C H and H. G. D R I C K A M E R , J. Chem. Phys. 45

(1966) 1020.
23. K . A . G S C H N E I D N E R J R. , Solid State Phys. 16 (1964)

275.
24. D . B . S I R D E S H M U K H and K. G. S U B H A D R A , J. Appl.

Phys. 40 (1970) 5404.
25. J . M O R T , ibid. 38 (1967) 3415.
26. S . E P S T E I N and A. P . B R E T T E R V E L L E , Phys. Rev. 138

(1965) 771.
27. A . M Y E R S , Phil. Mag. 5 (1960) 927.
28. J . F . S M I T H , Trans. AIME 209 (1957) 1212.
29. R . W E L L and A. W. L A W S O N , J. Chem. Phys. 37 (1962)

2730.
30. F . F . V O R O N O V, V. A. G A N C H E R V A, O. V.

S T A L G O R O V A and T. A. A G A P O V A , Sov. Phys.–Solid State
8 (1966) 1313.

31. D . R . S T E P H E N S and E . M. L I L L E Y , J. Appl. Phys. 39
(1968) 177.

32. S . N . V A I D Y A and G. C . K E N N E D Y , J. Phys. Chem. Solids
32 (1971) 951.

33. D . B . S I R D E S H M U K H, L . S I R D E S H M U K H and K. G.
S U B H A D R A , “Alkali Halides” (Springer-Verlag, Berlin, 2001).

34. G . R . B A R S C H and Z . P . C H A N G , Phys. Status Solidi 19
(1967) 139.

35. P .W. B R I D G M A N , Proc. Amer. Acad. Arts and Sci. 67 (1932)
345.

36. E . A . P E R E Z-A L B U E R N E and H. G. D R I C K A M E R , J.
Chem. Phys. 43 (1965) 1381.

37. H . E . H I T E and K. J . K E A R N E Y , J. Appl. Phys. 38 (1967)
5424.

38. S . M A T H U R, C . M. K A C C H A V A and S . C . S A X E N A ,
Proc. Natl. Inst. Sci. (India) 33 (1967) 289.

39. P . R . S O N and R. A. B A R T E L S , J. Phys. Chem. Solids 33
(1972) 819.

40. M. C R O F T and A. J A Y A R A M A N , Solid State Comm. 29
(1980) 9.

41. I . V E D E L, A. M. R E D O N, J . M. L E G E R, J . R O S S A T-
M I G N O T and B. V O G T , J. Phys. C: Solid State 19 (1986) 6297.

42. A . C H A T T E R J E E , A. K. S I N G H and A. J A Y A R A M A N ,
Phys. Rev. B6 (1972) 2258.

1568



43. E . K A L D I S and P . W A C H T E R , Solid State Comm. 11 (1972)
907.

44. T . H A I L I N G, G. A. S A U N D E R S and H. B A C H , Phys. Rev.
B29 (1984) 1848.

45. C . F . C L I N E and D. R . S T E P H E N S , J. Appl. Phys. 36 (1965)
2869.

46. N . S O G A and O. L . A N D E R S O N , ibid. 38 (1967) 2985.
47. J . B . B A T E M A N , ibid. 33 (1962) 3309.
48. R . A . M O N T A L V O and D. W. L A N G E R , ibid. 41 (1970)

4101.
49. G . G . B E N T L E , J. Amer. Cer. Soc. 49 (1966) 125.
50. R . E . F R Y X E L L and B. A. C H A N D L E R , ibid. 47 (1964)

283.
51. D . B E R L I N C O U R T, H. J A F F E and L .R . S H I O Z A W E ,

Phys. Rev. 129 (1963) 1009.
52. R . S T E V E N S O N , Can. J. Phys. 44 (1966) 281.
53. S . H A U S S U H L , Phys. Status Solidi 28 (1968) 127.
54. N . S O G A , J. Geophys. Res. 76 (1971) 3983.
55. H . W A N G and G. S I M M O N S , J. Geophys. Res. 78 (1973)

1262.
56. T . J . A R H E N S, D. L A N D E R S O N and A. E .

R I N G W O O D , Rev. Geophys. Space Res. 7 (1969) 667.
57. T . J . A R H E N S, T . T A K A H A S H I and G. D A V I E S , J. Geo-

phys. Res. 75 (1970) 310.
58. P . W. B R I D G M A N , Amer. J. Sci. 10 (1925) 483.
59. M. S . D O R A I S W A M Y , Proc. Indian Acad. Sci. A25 (1947)

413.
60. G . S I M M O N S and A. W. E N G L A N D , Phys. Earth Planet.

Sci. 2 (1969) 69.
61. H . M A O, T .T A K A H A S H I , W. A. B A S S E T, G. L .

K I N S L A N D and L. M E R R I L , J. Geophys. Res. 79 (1974) 1165.
62. P . W. B R I D G M A N , Proc. Amer. Acad. Arts and Sci. 76 (1945)

9.
63. S . N . V A I D Y A and G. C . K E N N E D Y , J. Chem. Phys. 55

(1971) 987.
64. G . S I M M O N S and F . B I R C H , J. Appl. Phys. 34 (1963) 2736.
65. A . A . C H U D I N O V , Sov. Phys.–Solid State 4 (1962) 553.
66. B . H O U S T O N, R. E . S T R A K N A and H. S . B E L S O N , J.

Appl. Phys. 39 (1968) 3913.
67. A . A . C H U D I N O V , Sov. Phys.–Cryst. 8 (1963) 374.
68. S . R A B I , Phys. Rev. 167 (1968) 801.
69. G . L I P P M A N N, P . K A S T E N E R and W. W A N N I N G E R ,

Phys. Stat. Sol. (a) 6 (1971) k159.
70. J . B H I M A S E N A C H A R and G. V E N K A T A R A T N A M , J.

Acoust. Soc. Amer. 27 (1955) 922.
71. T . V . R H Y Z H O V A, K. S . A L E X A N D R O V and V. M.

K O R O B H O V A , Izv. Earth Phys. 2 (1966) 63.
72. H . O Z K A N, L . C A R T Z and J . C . J A M I E S O N , J. Appl.

Phys. 45 (1974) 556.
73. R . S . A D H A V , J. Acoust. Soc. Amer. 43 (1968) 839.
74. D . H . C H U N G and Y. L I , Phys. Status Solidi (a) 5 (1971) 669.
75. B . W. J A M E S , Phys. Status Solidi (a) 13 (1972) 89.
76. J . M. F A R L E Y, G. A. S A U N D E R S and D. Y. C H U N G ,

J. Phys. C: Solid State 6 (1973) 2010.
77. L . R A M A M U R T H Y and P . J . R E D D Y , J. Phys. Chem. Solids

28 (1967) 2131.
78. D . P . D A N D E K A R and A. L . R U O F F , J. Appl. Phys. 39

(1968) 6004.
79. C . P . C L I N E, H. L . D U N E G A N and G. W.

H E N D E R S O N , ibid. 38 (1967) 1944.
80. G . E . S T E D M A N and D. J . N E W M A N , J. Chem. Phys. 55

(1971) 152.
81. E . H . C A R L S O N, D. H. C U R R E N T and C. L . F O I L S ,

ibid. 55 (1971) 5831.
82. Y . S Y O N O, T . G O T O, J . N A K A I , Y . N A K A G A W A and

H. I W A S A K I , J. Phys. Soc. Japan 37 (1974) 442.
83. M. H. R I C E , R . G . M C Q U E E N and J . M. W A L S H , Solid

State Phys. 6 (1958) 1.
84. R . Y . G O R A N S O N, D. B A N C R O F T, B . L . B U R T O N,

T . B L E C H A R, E . E . H O U S T O N, E . F . G I T T I N G S and
S . A . L A N D E E N , J. Appl. Phys. 26 (1955) 1472.

85. H . D . M A L L O R Y , ibid. 26 (1955) 553.
86. H . G . D R I C K A M E R, R . W. L Y N C H, R. L .

C L E N D E N E N and E . A. P E R E Z-A L B U E R N E , Solid State
Phys. 19 (1966) 135.

87. H . B A R T H O L I N, D. F L O R E N C E, G. P A R I S O T, J .
P A U R E A U and O. V O G T , Phys. Lett. 60 A (1977) 47.

88. G . W I L L , E . H I N Z E and W. N U D I N G , Phys. Chem. Miner.
6 (1984) 157.

89. E . A . P E R E Z-A L B U E R N E, K. F . F O R S G R E N and H. G.
D R I C K A M E R , Rev. Sci. Instr. 35 (1964) 29.

90. J . C . J A M I E S O N , Z. Krist. 107 (1956) 65.
91. D . B . M C W H A N and A. J A Y A R A M A N , Appl. Phys. Lett. 3

(1963) 129.
92. J . D . B A R N E T T and H. J . H A L L , Rev. Sci. Instr. 35 (1964)

175.
93. T . T A K A H A S H I and W. A. B A S S E T T E , Science 145 (1964)

3631.
94. J . M. L E G E R, K. O K I , A .M. R E D O N, I . V E D E L, J .

R O S S E T-M I G N A U D and O. V O G T , Phys. Rev. B33 (1986)
1986.

95. J . M. F A R L E Y and G. A. S A U N D E R S , Solid State Comm.
9 (1971) 965.

96. L . B A L A M U T H , Phys. Rev. 45 (1934) 715.
97. F . C . R O S E , ibid. 49 (1936) 50.
98. S . B H A G A V A N T A M and J . B H I M A S E N A C H A R , Proc. In-

dian Acad. Sci. A20 (1944) 298.
99. H . B . H U N T I N G T O N , Phys. Rev. 72 (1947) 321.

100. J . W I L L I A M S and J . L A M B , J. Acoust. Soc. Amer. 30 (1958)
308.

101. H . J . M C S K I M I N , ibid. 33 (1961) 12.
102. V . K . R A J U and P . J . R E D D Y , J. Phys. E: Sci. Instr. 12 (1974)

230.
103. D . H . C H U N G, D. J . S I L V E R S M I T H and B. B . C H I C K ,

Rev. Sci. Instr. 40 (1969) 718.
104. C . S C H A E F E R and L . B E R G M A N , Naturwissenchaften 22

(1934) 685.
105. R . S . K R I S H N A N , Proc. Indian Acad. Sci. A41 (1955) 91.
106. G . N . R A M A C H A N D R A N and W. A. W O O S T E R , Nature

164 (1949) 839.
107. Idem., Acta Crystallogr. 4 (1951) 335, 431.
108. R . G R O V E R, R . N. K E E L E R, F . J . R O G E R S and G. C .

K E N N E D Y , J. Phys. Chem. Solids 30 (1969) 2091.
109. D . B .S I R D E S H M U K H , J. Appl. Phys. 38 (1967) 4083.
110. R . V . G. S U N D A R A R A O , Proc. Indian. Acad. Sci. A32

(1950) 365.
111. M. B O R N and K. H U A N G , “Dynamical Theory of Crystal Lat-

tices” (Clarendon Press: Oxford, 1954) p. 142.
112. J . F . N Y E , “Physical Properties of Crystals” (Clarendon Press,

Oxford, 1957) p. 142.
113. G . A . A L E R S and J . R . N E I G H B O U R S , J. Appl. Phys. 28

(1957) 1514.
114. W. J . A L T O N and A. J . B A R L O W , ibid. 38 (1967) 3817.
115. L . K N O P O F F , Phys. Rev. 5A (1965) 1445.
116. D . B . S I R D E S H M U K H , Acta Crystallogr. A 24 (1968) 318.
117. J . W A S E R and L . P A U L I N G , J. Chem. Phys. 18 (1950)

747.
118. D . H . Y E A N and J . R . R I T E R , J. Phys. Chem. Solids 32,

(1971) 653.
119. N . G . E I N S P R U C H and L . T . C L A I R B O R N E , J. Acoust.

Soc. Amer. 35 (1963) 925.
120. B . S Z I G E T I , Proc. Roy. Soc. (Lond.) 204 (1950) 51.
121. O . L . A N D E R S O N and P . G L Y N N , J. Phys. Chem. Solids 26

(1965) 1961.
122. M. P . T O S I , Solid State Phys. 16 (1964) 1.
123. G . C . B E N S O N, P . I . F R E E M A N and E. D E M P S E Y , J.

Amer. Ceram. Soc. 46 (1963) 43.
124. G . C . B E N S O N and E . D E M P S E Y , Proc. Roy. Soc. (Lond.)

A266 (1962) 344.
125. K . S . K R I S H N A N and S . K . R O Y , ibid. 210 (1952) 487.
126. D . B . S I R D E S H M U K H and K. G. S U B H A D R A , Indian J.

Pure Appl. Phys. 11 (1973) 938.
127. K . G . S U B H A D R A and D. B . S I R D E S H M U K H , J. Appl.

Phys. 40 (1969) 2357.
128. F . E . P R E T Z E L, G. N. R U P E R T, C . L . M A D E R, E .

K . S T O R M S, G. V. G R I T T O N and C. C . R U S H I N G , J.
Phys. Chem. Solids 16 (1960) 10.

129. S . H A U S S U H L and W. S K O R E Z Y K , Zeit. f. Krist. 130 (1969)
340.

130. R . W. K E Y E S , J. Appl. Phys. 33 (1962) 3371.

1569



131. S . S . M I T R A and R. M A R S H A L L , J. Chem. Phys. 41 (1964)
3158.

132. O . L . A N D E R S O N and J . E . N A F E , J. Geophys. Res. 70
(1965) 3951.

133. A . J A Y A R A M A N, B. B A T T L O G G, R. G. M A I N E S and
H. B A C H , Phys. Rev. B26 (1982) 3347.

134. D . B . S I R D E S H M U K H and K. G. S U B H A D R A , J. Appl.
Phys. 59 (1986) 276.

135. D . L . A N D E R S O N and O. L . A N D E R S O N , J. Geophys. Res.
75 (1970) 3494.

136. H . N E U M A N N , Cryst. Res. Tech. 22 (1987) 99.
137. P . D E U S and H. A. S C H N E I D E R , ibid. 20 (1985) 867.
138. R . R . R E D D Y, Y. N. A H A M M E D, K. R A M A G O P A L

and D. V. R A G H U R A M , Indian. J. Pure and Appl. Phys. 37
(1999) 25.

139. D . B . S I R D E S H M U K H and K. G. S U B H A D R A , J. Appl.
Phys. 46 (1975) 3681.

140. O . L . A N D E R S O N, E . S C H R E I B E R and R. C .
L E I B E R M A N N , Rev. Geophys. 6 (1968) 491.

141. T . G . W O R L T O N, L . C A R T Z, A. N I R A V A T H and H.
O Z K A N , High Temp.–High Press. 4 (1972) 463.

142. H . O Z K A N and L. C A R T Z , AIP Conf. Proc. 17 (1974)
21.

143. O . L . A N D E R S O N , J. Phys. Chem. Solids 24 (1963) 909.
144. J . M. F A R L E Y, G. A. S A U N D E R S and D. Y. C H U N G ,

J. Phys. C: Solid State 8 (1975) 780.

Received 24 April
and accepted 22 September 2004

1570


